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Preface

The purpose of study was to develop a means of

incorporating aeroelastic effects into a three dimensional

unsteady potential flow solution. As a step towards the

0 inclusion of unsteady aeroelastic effects, a static

development was performed.

Extensive modifications were made to an existing three

dimensional vortex paneling FORTRAN code to allow it to be

used iteratively with MSC/NASTRAN to achieve aeroelastic

equilibrium for arbitrary bodies. Much attention was given

to the development of a flexible interface and to improving

the efficiency of the paneling code. The iterative method

was evaluated, but lack of sufficient computational

0 facilities prevented complete testing of the implementation.

This work should be continued and expanded, as it represents

a significant enhancement to the modeling capabilities of

the potential flow.

I would like to thank my thesis advisor, Capt. Curtis

P. Mracek, whose continued help and support through all the

0 difficult and frustrating times made this thesis possible. I

would also like to thank Dr. A. Palazatto and Capt. H. Gans

for their help with the finite element modeling and use of

• MSC/Nastran. Finally, I would like to thank my wife

Jane-Anne and my daughter Sarah for their love and support

during the preparation of this thesis.

0 Raymond C. Maple
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Abstract

The purpose of the study was to develop a method of

incorporating static aeroelastic effects into a vortex

paneling aerodynamic solution. The study had two basic

objectives: (1) Devise a solution technique; (2)

Implement the technique and analyze several test cases.

An iterative solution is developed which uses

MSC/NASTRAN to perform structural analysis, and a

three-dimensional vortex paneling method to perform

aerodynamic analysis. The theory behind the method and

details of the implementation are presented.

The method is tested for three bodies: a unit aspect

ratio rectangular flat plate wing, a rectangular flat plate

wing with aspect ratio 6, and a hollow sphere. Results of

these tests are used to evaluate both the general

performance of the implementation, and the performance for

the specific tests. The results indicate that the iterative

solution method is robust and could potentially be used for

solving a variety of aeroelastic problems. Recommendations

for further development, evaluation, and use are made. -i<
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AN ITERATIVE SOLUTION rO AEROELASTIC EFFECTS

IN POTENTIAL FLOW

I. INTRODUCTION

Problem Statement

Develop a means of incorporating aeroelastic effects

into an existing unsteady potential flow numerical solution.

Scope of Development

As a first step in the resolution of the stated

problem, this study focuses on development for steady state

cases. Particular attention is paid to improving the

efficiency of the potential flow solution and providing it

with a flexible interface which will serve as the foundation

for future work.

Method of Approach

The method developed solves for the steady state

solution to the aeroelastic problem by the alternate use of

a three-dimensional potential flow code and a general

purpose structural finite element code. Results from the

two codes are used iteratively until equilibrium between

structural and aerodynamic forces is achieved.

Background and Research

In a time when prototype aircraft can cost hundreds of

millions of dollars, it becomes imperative that designs be

tested as thoroughly and accurately as possible before any
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hardware is built. This has led to increased reliance on

computer simulation of systems. Simulations require

accurate modeling, and much effort has gone into devising

accurate modeling techniques for all aspects of flight,

including aerodynamic and aeroelastic phenomena.

Aeroelasticity. The importance of aeroelasticity in

the design of aircraft was recognized in the 1920's, but it

was not until the late 30's and 40's that serious

consideration was given to aeroelastic phenomena. During

this time period, aircraft designs began incorporating thin,

high aspect ratio lifting surfaces which were inherently

less rigid than earlier designs. In the late 1940's, as

fighter aircraft began operating at high subsonic speeds

with correspondingly high dynamic pressures, the

incorporation of aeroelasticity in fighter design became

essential. (17:1.1)

Early aeroelastic analysis was limited to static and

quasi-static cases. The effects of static aeroelasticity on

aircraft performance can be divided into three categories:

divergence, control effectiveness, and static stability.

(18:2)

Divergence occurs when aerodynamic moments exceed the

torsional strength of a wing and structural failure occurs.

Divergence is usually associated with a particular dynamic

pressure, iD" and all aircraft are designed to fly below the

corresponding divergence velocity. (4:6)
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Control effectiveness is affected by static

aeroelasticity in several ways. In a technical report

prepared for the Air Force in 1957, the J.B. Rea Company

identifies two prime examples. Consider first the wing

section in Figure 1. The deflected control surface creates

a moment about the elastic axis of the wing, causing the

wing to twist nose down, decreasing or even reversing the

effect of the control input.(18:8) A second effect

involves fuselage bending. A long, relatively flexible

fuselage such as that of the B-52 can bend significantly,

changing the angle of attack of horizontal and vertical tail

surfaces.(18:15)

Moment i nduced by
control surface

40

Figure 1. Impact of Aeroelastic Twist on Control
Effectiveness.

Perhaps the most significant effect of static

aeroelasticity on subsonic aircraft is that of modifying

stability derivatives. William P. Rodden describes the

significance of wing bending.

1-3
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The dihedral effect can be a critical aeroelastic
problem because of the importance of dihedral in
determining dynamic stability in the spiral and
Dutch roll modes of motion and the large changes
in dihedral that result from symmetrical wing
bending during longitudinal maneuvers that
approach limit load factor.(11:368)

Lift and drag are also affected by wing bending and torsion.

As aircraft speeds moved into the supersonic region,

flutter, a dynamic aeroelastic effect, became a serious

problem. A large percentage of recent aeroelastic study has

been devoted to the study of flutter. Static aeroelastic

effects, however, are still recognized as important design

considerations. The thin airfoils and high load factors of

supersonic fighter aircraft can lead to significant elastic

effects on stability derivatives.(15:2-2,2-3)

With the introduction of composite wing structures, the

ability to utilize static aeroelastic effects is possible.

This design technique is called aeroelastic tailoring.

Aeroelastic tailoring is

... a design technique in which directional
stiffness is used in aircraft structural design to
control aeroelastic deformation, static or
dynamic, in such a way that the aerodynamic and
structural performance is affected in a beneficial
way. (15:2-4)

Aeroelastic tailoring can be used to increase control

effectiveness, decrease drag, and help control flutter and

divergence while using a lighter structure.(16:2)

Formulation and Solution of the Aeroelastic Equations.

Early formulations of the aeroelastic problem centered on

the typical section developed by Theodorsen and Garrick,

which is an attempt to model the elastic behavior of a wing

1-4
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at a particular location along the span. (1:189) Other

* formulations include one-dimensional and two-dimensional

analyses. Current finite element approaches allow the

investigation of general three-dimensional structures. The

* development presented here makes use of a three dimensional

potential flow aerodynamic code and a general purpose finite

element structural code in an iterative scheme.

* The iterative scheme used in this development is not

new. It is described in Reference 18, published in 1957.

The primary difference between the effectiveness of the

* method in 1957 and the effectiveness today is the ability to

calculate, with the aid of computers, aerodynamic loads and

structura] deflections for arbitrary shapes with reasonably

high accuracy.

The aerodynamic code used in this work was developed by

Mracek (8). It consists of a three-dimensional vortex

paneling method which possesses many features not seen in

previous works. Among these are simplified modeling and the

ability to predict general unsteady motion with progressive

wake modeling. For a complete description of this work and

a comprehensive bibliography of prior developments leading

to it, see Reference 8.

Structural analysis is performed using the well known

general purpose finite element code, MSC/NASTRAN, developed

by the MacNeal-Schwendler Corp. Version 66 was used for

this work. Reference 14 provides an excellent overview of

1-5
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the portions of this finite element package which pertain to

* this study.

Assumptions

It is assumed in this work that structural

displacements due to aerodynamic loads are small. This

assumption is required both by the linear displacement

finite element method, and by the method of iteration used

to attain aeroelastic equilibrium.

Test Cases

Analysis is performed for three bodies. A flat

rectangular wing with an aspect ratio of six is compared to

one-dimensional aeroelastic theory. Next, a flat

rectangular wing with unit aspect ratio is analyzed at

various angles of attack, focusing on qualitative changes in

induced moments and forces. Finally, the ability of the

method to handle non-lifting shell structures is shown

through the analysis of a spherical shell.

1-6
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II. THEORY

Introduction

The theoretical foundation upon which this work is

built can be divided into four primary groups. First there

is aeroelastic theory, which provides the equations of

motion. A means of solving these equations is then needed.

In this study, the equations are solved by dividing the

aeroelastic problem into its two components, aerodynamics

and structural analysis, which in turn have their own

theoretical bases. This chapter follows this breakdown. In

the first part of the chapter, the steady state

one-dimensional aeroelastic equations of motion are derived.

Next, the iterative technique for solving these equations is

developed. Finally, the aerodynamic and structural

components of the iteration are discussed.

Static One Dimensional Aeroelasticity

Traditionally, static aeroelasticity is introduced in

* one of two ways. The first is by means of the typical

section (1:189-279), which does not model an actual wing but

serves, to illustrate the fundamental concepts of static

aeroelasticity. The second, more realistic, formulation

models a wing as a bending-torsion beam whose behavior can

be described by just one variable. This discussion will use

the latter.

2-1
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While the iterative solution developed in the next

* section is not based on a direct solution of the equations

of static aeroelasticity, a review of the classical one

dimensional solution gives some insight into the problem and

* serves as a baseline for evaluation of results. In this

section, the static torsional equation of motion is derived

for a flat plate wing. ( Figure 2. ) An expression for the

* vertical displacement at the wing tips is then developed.

The derivation that follows is from Dowell (4:15-18).

Sc

0y

,-arflow z axi

aerodynamic
center

Figure 2. Flat Plate Rectangular Wing

The torsional equation of motion is found by equating

the external (aerodynamic) and internal moments acting on

the wing. Summing the moments acting on a differential

strip of the wing (Figure 3), the equilibrium condition is

found to be
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MY

d ( 9

Figure 3. Moments on a Differential Strip of Wing

d GJd ) + M = 0 (2.1)

where GJ is the torsional stiffness of the plate and My is

the applied (aerodynamic) moment per unit span. Assuming

that the center of the wing is fixed and the tips free, the

boundary conditions are

0 = 0 at y = 0

(2.2)
GJd = 0 at y = ±t

where t is the semispan (b/2) of the wing.

The aerodynamic moment per unit span is

My = Mac + eL (2.3)
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M ac being the moment about the aerodynamic center, L the

* lift per unit length and e the distance between the

aerodynamic center and the elastic axis. From aerodynamic

theory, Mac is

aacM AC = : CMa (2.4)

* and for simplicity, the lift distribution is assumed to be

L(y) = 'cC L =qc C L ( e()) (2.5)

where

dC L
CL - (2.6)

a da

* and j is the dynamic pressure, c the wing chord, and a 0

the undeformed angle of attack.

Nondimensionalizing equation 2.1 results in

d2  + X20 = K (2.7)

where

y (2.8)
-2

X2 = C e (2.9)
), -. c CL

K = -t CL a + c M(2.10)

with the boundary conditions becoming
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9 = 0 at i; = 0
• (2.11)

GJdO = 0 at -y = ±1
dY

* The general solution to Equation 2.7 is

K

9 = A sin(Xiy) + B cos()j) + - K (2.12)

Applying boundary conditions and solving for the

unknowns yields

* e = -K (1 - tan(X) sin( I;) - cos(Xy) (2.13)

The static aeroelastic stability of a wing is a function

of the dynamic pressure. The divergence dynamic pressure ;D

is found by using Equations 2.13 and 2.9 and letting 9 go to

infinity. Solving for "D results in

- GJ (2.14)

8 4, ceCL

For a flat plate wing some simplifications may be made

* to the above equations. If h is the thickness of the plate

and h << c, then

ch3  (2.15)

The elastic axis for a uniform rectangular plate lies

along the center of the chord, while the aerodynamic center

* is 1/4 chord from the leading edge. The distance from the

2-5
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elastic axis to the aerodynamic center is therefore c/4. In

* addition, for a flat plate, CMac = 0 for all angles of

attack. Making these substitutions leads to

2K : - -c3 CL= (2.16)

2 3c CL (2.17)

Gh a

a -aO (i - tan(X) sin(Wy) - cos(X)) (2.18)

Knowing the angle of attack at all locations along the

span, one can now derive an expression for the vertical

displacement at the tips. The equation of motion for a pure

bending beam is:

d4

El d w = f(j) (2.19)
dy

where E1 is the beam bending stiffness, w is the vertical

displacement, and f(y) is the normal load as a function of

y.(5:92) The function f(y) is aproximated by

o f(i. 4 L(iy ) - 4 qc o
f(y) E 0 cos( C L (2.20)

Substituting Equations 2.18 and 2.20 into Equation 2.19

yields

EI d w .-
_ _ _

71 cos(a O )
dy 0

C CL a o(tan(X) sin(X)Y) - cosO()) (2.21)
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Boundary conditions for the wing are the same as those for a

• cantelevered beam, specifically

w(0) = 0 dw i - 0
d -=0

* (2.22)

d2 w = o El

dy I Y=±1 dyw Ii=*i

Successive integration and application of the boundary

conditions yields

-c4

W(~)- qctw) El cos(a ) CL CI

* (tan(X) sin(X Y) - cos(XLi))

1 y - 11
+ X 2 cos(X) -S tan(X)y - X (2.23)

Recognizing that the wing is a plate and that Poisson

effects will be significant, the beam bending stiffness, EI,

* is modified by including a correction term, 1-P This

term appears in the definition of flexural rigidity from

fourth order plate theory, the analog of beam bending

* stiffness. Substituting for the inertia term, the modified

bending stiffness becomes

EI 2)Ech 3 21(.4
E 0 12 (2.24)

With this substitution, the displacement at the tips

(y = ±*) becomes

2-7
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w(1) = - C~ [ -T Cos00
Eh' cosca ) a

1 1 1 tan( .]+ X 2 cos() a (2.25)

Equations 2.18 and 2.25 represent a closed form

solution for the twist and deflection of a wing due to

aerodynamic loads. They were, however, developed subject to

several simplifying assumptions. In the next section, a

more general method of solving the static aeroelastic

problem is developed.

An Iterative Solution

The aeroelastic equations of motion, whether one-

dimensional or three-dimensional, are merely statements of

equilibrium between internal structural forces and external

aerodynamic forces. The method developed here is a simple

iterative technique for reaching the point of equilibrium

between internal and external loads. Used in the iteration

are a three dimensional potential flow code and a general

purpose structural finite element analysis.

The process is begun by calculating the aerodynamic

loads induced on an undeformed body. These loads are used

by the finite element code to deform the body. When the

deformed body is placed in the potential flow, a new set of

aerodynamic loads are generated, which are in turn applied

to the (undeformed) body. The load generation - deformation

2-8



cycle is repeated until both the load and the deformation do

* not change from one iteration to the next. This process is

represented graphically in Figure 4.

In theory, the iteration stops when the loads imposed

* on the body equal those required to deform the body. In

practice this is true only to the extent that the model

being analyzed is reaching an equilibrium point when the

• external (aerodynamic) loads are applied to the undeformed

body. The errors incurred by this limitation are small

provided displacments are small.

* The small displacement assumption is utilized in

several aspects of the iterative process. Linear

displacement finite element theory requires small

• displacements. Linear finite element theory also assumes

that applied loads remain constant in magnitude and

direction as the body deforms, which is the source of the

* discrepancy between aerodynamic loads and internal stresses

when the iterative process halts.

In reality, the problem is non-linear in nature. As a

body subjected to aerodynamic loads deforms, both the

magnitude and the direction of the applied load changes. The

direction changes because a pressure force always acts

normal to a surface. The magnitude changes for two reasons.

First, as the shape of the body changes, the pressures in

the flow change. This is the major source of change in load

magnitude and is accounted for in the present method. The

2-9



finite element

0Q

aerodynamnicI

Iter #0 1 2 34

DISPLRCEMENT

Figure 4. Graphical Representation of the Iterative Process

second change in magnitude comes about because as the body

deforms, the area over which external pressures act changes.

This change is not accounted for in the present method.

When displacements are small, changes in the surface

area and normal direction are small, and load variations due

to pressure changes in the flow dominate.

It is observed that these errors could have been

eliminated by applying loads to the body (deformed or

undeformed) which produced them. This requires that element

strain energies from the previous iteration be provided as

input to the finite element solution. To accomplish this

2-10
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with MSC/NASTRAN, one must input temperature gradients which

cause thermal strains equal to the desired strains.

Calculation of these "temperatures" is not straightforward.

Because of the difficulties in making the "temperature"

calculations and the magnitude of the errors involved, no

attempt at this form of iteration was made.

In the next two sections the aerodynamic and structural

components of the iterative process are discussed.

The Potential Flow Solution

The field equations for incompressible potential flow

are:

- incompressibility

div(V) = 2 = 0 (2.26)

- equation of motion

0 + 14 grad * + U = f(t) (2.27)

where * is the velocity potential function, V = , and U is

the scalar potential function for a body force. (6:245)

Equation 2.26 is a statement of the divergenceless condition

and Equation 2.27 is the unsteady Bernoulli equation. When a

body is placed in the flow, the total velocity V, may be

written as

V = V + Vd (2.28)

where V is the free stream velocity and Vd is a

2-11



superimposed disturbance velocity caused by the body.

Boundary conditions are then (6:249)

V n = 0 at the surface
(2.29)

Vd = 0 at infinity

Equations 2.29 state that no flow may pass through the

body, and that the body must have no effect on the flow at

infinity.

When the body placed in the flow is a thin lifting

surface, two additional conditions must be met. They are

the conservation of circulation in the wake (6:242) and the

Kutta condition. (6:392,393)

Dr 0 on the wake (2.30)

AC = 0 along the trailing edge (2.31)

The paneling method developed by Mracek models the body

in the flow as a collection of triangular vortex sheets, the

corners of which lie on the body. The vorticity

distribution in the panel is a linear function of the

vorticity at the corners (nodes). The wake is modeled as a

lattice of constant strength vortex cores. For a complete

derivation of the modeling technique see Reference 8.

Flow induced by a vorticity distribution satisfies the

divergenceless condition provided the vorticity

distribution, j, is itself divergenceless, i.e.

2-12



div(j) 0 (2.32)

For an assembly of triangles, this condition may be written

as

D (2.33)

where D (mxn, n > m)is a matrix of coefficients relating the

divergence of the vorticity distributions on the triangles

to the vorticity at the nodes, and 5 is the vector of

nodal vorticities.

* The no penetration condition is satisfied at control

points located at the centroid of each triangle. For the

assembled triangles, the matrix equation to be satisfied is

A 5 =(2.34)

where A (mxn) are influence coefficients which relate the

* normal velocity at the control point to nodal vorticities,

?5 is again the vector of nodal vorticities, and U

is a vector of inertial velocities at the control points.

* Equation 2.34 must be solved subject to the

constraints in Equation 2.33. The solution technique

originally used by Mracek, concatenation of the matrices and

* solution via a weighted least squares method (8:29), has

many drawbacks. The divergenceless conditions are not solved

exactly, and the method involves repeatedly solving large

* matrix equations.

2-13
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An improved solution technique was devised. It is

* clear that the matrices A and D are linear transforms from

Rn to RM, and that the divergenceless conditions require

that the vector 5 lie in the null space of D. From linear

* algebra, a basis for the null space of D may be obtained

from the row-echelon form of D. (9:158) The constraint

equations may be rearranged such that the row-echelon form

Sof D is

k ](2.35)
where B is k x (n-k) k being rank(B). The following

equation is then equivalent to Equation 2.33.

k (2.36)

where w is k x I and 2 is (n-k) x 1. The solution to

this equation is

1 = -( 2 (2.37)

or

[ G2 =  D re Z2  
(2.38)

Substituting this result into Equation 2.34, one gets

A D reW2 = U (2.39)

The least squares solution for Z2 is obtained by solving

2-14
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SD T 2  D T AT (2.40)re re 2 re

The vector 5 obtained by substituting the result of

Equation 2.40 into Equation 2.38 satisfies the

* divergenceless equations exactly, and represents the point

in the null space of D that is closest, in a least squares

sense, to the true solution of Equation 2.34. The resulting

error in the no penetration condition is given by

= U - A 5 (2.41)

* Besides having the divergenceless conditions satisfied

exactly, this method of solution has the advantage of

requiring the solution of a smaller set of simultaneous

* equations. The matrix Dre need only be calculated once per

iteration, but Equation 2.40 is typically solved up to 60

times per iteration. The savings in computational time can

0 be very significant.

Because the no penetration conditions are not satisfied

exactly, some modeling sensitivity is built into the

* solution. It is possible to have a model for which the

errors are too large, making the model unusable. (see

Chapter III.) .

Nodal Pressures. The function the aerodynamic solution

in the iterative method is to calculate pressure loads on

the body. In the present method, only the pressure values

at the nodes are required.
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For static steady state conditions, Equation 2.27

* reduces to the steady Bernoulli's equation.

1 V + = const (2.42)p

* The conditions close to the body are thus related to the

free stream conditions.

1lV2 + !Q 1 V 2 + (2.43)

p - p V V2_ V 2
_ _ _ CD (2 .4 4 )

p 2

The nondimensional pressure coefficient is defined as

(6:500)

S p -po

Cp = POD (2.45)
p 1 -V 2

Substituting Equation 2.44 into Equation 2.45 gives

2
= 1 V(~ (2.46)

* Therefore, to find the pressure at the node, one only has to

find the velocity at the node.

The velocity induced above and below a vorticity

* distribution may be expressed as

v = v + AV (2.47)

SV 1 = + V (2.48)

2-16



where V is the velocity above the distribution, the

velocity below, V the velocity between the upper and lower

surfaces, and AV the velocity jump from upper to lower

surfaces. AV is related to the vorticity distribution by

(8:49)

= l xft(2.49)

where A is the unit normal to the surface. At the node, the

vorticity 6n is perpendicular to the surface normal and

Equation 2.49 reduces to

1 [V I I n1 (2.50)

For a closed body, V i e the velocity within the body, is

zero. Solving Equation 2.48 for V and using Equations 2.47

and 2.50, the velocity at the node is found to be

IlI =  (2.51)

and the pressure coefficient is

=1 On )2 (2.52)

For a thin lifting surface, V1 is not zero. The

steady nondimentional pressure differential between the

upper and lower surfaces is

Pi -Pu
ACp = -C (2.53)
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Substituting Equation 2.44 into 2.53 one gets

& 1 u 2 _ V (2.54)

0

Using the relationships in Equations 2.47, 2.48, 2.50, and

simplifying, Equation 2.54 reduces to

AC~ 2( 1~ Vm - (2.55)Cp = 7 2

Numerically, the mean velocity vector V is found by

calculating the velocity at the node induced by all the

* vortex triangles and the wake vortex cores.

The Finite Element Analysis

* Finite element analysis is used in this work to

determine the translational displacements of the node

points. The underlying theory of the method used was

developed over twenty years ago and is well published. For

this reason, a theoretical discussion of finite element

techniques is not included in this work. What follows is a

discussion of the properties of the element used in this

analysis, and the rationale behind the choice of that

element. For a review of finite element methods see Cook.

(Reference 3.)

The element used for both the sphere and flat plate

analyses is the CTRIA3 element provided within MSC/NASTRAN.

This is a flat, three noded element with combined bending
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and membrane effects.(10:2.4-118) The decision to use this

* particular element was driven by two considerations.

The first was data compatability with the potential

flow solution. Geometrically, the data required for the

* CTRIA3 element is identical to that which describes the

vortex panels in the potential flow. This allows the input

data for the two codes to be easily integrated. (see

* Appendix A)

The second consideration driving the choice of elements

was the goal of the finite element analysis. The output

* data of interest were nodal translations. The CTRIA3

element proved to have adequate accuracy in this respect,

eliminating the need for a more refined element.

* The CTRIA3 Element. The CTRIA3 element is formed by

combining a constant strain triangle with an isoparametric

triangular bending element. (7:5.8-2 - 5.8-16) The

* resulting element has six degrees of freedom at each node.

Defining a local coordinate system such that the local x and

y axes lie in the plane of the triangle, one has for each

* node:

- u and v displacements in the plane of the element

- out of plane displacement w

- 9x and 6 rotations about the local x and y axes

The sixth degree of freedom at each node, rotation about the

local z axis, is not supported (has zero stiffness) by this

element.
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* Figure 12. MSC/NASTRAN CTRIA3 Element

When a curved shell structure is being modeled, the

0 process of assembling the stiffness matrices of the

individual elements into the global stiffness matrix results

in a net stiffness for the (local) 6z degree of freedom,

• provided the elements sharing the node do not lie in the

same plane.(3:272-274) This occurs because the ez degree of

freedom for one element at a node has components in the

0 x and 0y directions when viewed from the reference frame of

the other elements at the node.

When a flat plate it is being modeled, transformation

from local to global coordinates does not result in any net

stiffness in the 8z degree of freedom. It is therefore

necessary to remove this degree of freedom from the model.

* This is achieved in MSC/NASTRAN by means of the Single Point

2-20



Constraint, or SPC card (10:2.4-404), or by means of the

PARAM AUTOSPC (10:2.4-286) command.

The flat triangular element does have its limitations

and faults. It performs reasonably as a plate element but

requires a very fine mesh to obtain good results when used

as a shell element. (Reference 2 provides a good example

of the successful use of flat triangular element for a

spherical shell.) In the next chapter, the models used in

this analysis are discussed and the performance of each one

is verified.
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III. Model Development and Validation

Introduction

In this chapter, the various models used to test the

iterative method described in the previous chapter are

discussed. Before proceeding, however, it is important to

discuss the goals of the analysis and the modeling

requirements needed to meet those goals.

The focus of this study was the development of the

software necessary to implement the iterative solution to

the aeroelastic problem. The analyses performed in support

of this work reflect this focus. Testing of the solution

technique is given precedence over the actual results.

Because of this, the modeling requirements one would

normally associate with an analysis of this sort are

somewhat relaxed.

Model requirements

The models used to test the iterative method were

* required to have two characteristics. First, they had to

respond to structural loads in a reasonably accurate

fashion. The second, perhaps more important requirement,

was that they provide accurate answers when placed in the

aerodynamic solution.

The second is considered the more important of the two

due to the nature of the possible errors involved. In a
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finite element analysis of the types of structures studied

here, errors are more likely to be quantitative than

qualitative. In other words, while the magnitudes of the

displacements calculated may be too low or too high, the

resulting shape will be more or less correct. When the

potential solution is badly modeled, however, the resulting

errors completely invalidate the model. An example of this

is seen below.

Flat Plate Wina Models

Two models are used to test the solution technique

applied to thin lifting surfaces. (Figures 6 and 7) These

are flat plate wings, one with unit aspect ratio and one

with aspect ratio of 6. The unit aspect ratio wing is used

to examine the change in aerodynamic moments and forces

associated with static stability derivatives. It is also

used to compare iteration convergence rates. The high

aspect ratio wing is compared with the one dimensional

aeroelastic theory developed in Chapter II.

Each of the wings is modeled as aluminum with Young's

Modulus (E) of 10.6E6 psi and Poisson's ratio (P) of 0.33.

Model one is 1/16th of an inch thick and Model two is 1/8th

of an inch thick. Model one is four inches square. Model

two has a span of 18 inches and a chord of 3 inches.

To determine the theoretical response of the plate to

an applied moment, the assumptions made by one-dimensional
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aeroelastic theory are used, i.e., the wing is assumed to

behave like a torsion rod and a pure bending beam. The root

of each wing is clamped.

For a torsion rod, the rotation about the elastic axis

due to a moment applied at an end is

My (3.1)

y U

where M is the magnitude of the applied moment, y is the

distance along the y axis from the center or root, G is the

shear moment, and J is the circular moment about the y axis.

Substituting for J as previously defined in Chapter II, the

angular deflection at the tip due to an end moment is

3MZ

e chU (3.2)
chT G

Table I shows the result of applying a 1 foot-pound

moment to one end of each of the models. The moment was

modeled by applying a linearly varying force to each of the

tip nodes in such a manner that a net moment about the

centerline of 1 foot-pound resulted. As can be seen, the

'model adequately models the torsional properties of the

plate.

Bending response is tested by applying loads totaling 1

pound to the tip nodes. The resulting displacements are

compared to those predicted by beam theory, modified to

account for Poisson effects. For a clamped beam with an end

load, the tip displacement is (5:92)
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Table I. Angular Deflections Due to a 1 Ft Lb End Moment

M Rotations (Rad) Percent
FEM Theory Difference

AR = 1 0.015 0.0185 -19

AR = 6 0.0135 0.0139 -2.8

w (3( 3.3)tip c h3 E

where W is the magnitude of the load and t is the semispan

of the wing. The results are listed in table II.

Table II. Deflection Due to a 1 Lb end Load

Model Displacements (in) Percent
FEM Theory Difference

AR = 1 0.00281 0.00275 +2

AR = 6 0.0452 0.0418 +8

Because the unit aspect ratio model bears little

resemblance to a beam, the test results differ from the

theoretical values. As this model will be used for

qualitative studies, the results are acceptable. The high

aspect ratio wing conforms closely to the theoretical

values. This model will be used for comparisons to

one-dimensional aeroelastic theory.

3-6



Spherical Models

The sole purpose of the spherical model is to test the

ability of the iterative technique to converge when used for

a general shell structure. A moderately fine model is

therefore required to sufficiently predict displacements,

though not as fine a model as would be required for a

complete structural analysis.

Two model configurations were tried. (Figures 8 and 9)

At first glance, model one would appear to be preferable to

model two. Element size and shape are more consistent and

there is a greater degree of symmetry. It turns out,

however, that model one could not adequately satisfy the no

penetration conditions in the aerodynamic solution. The

configuration in model two is used for the following

analyses.

Convergence of the Spherical Model. To determine the

mesh size required to achieve accurate displacements, a

convergence study was conducted. The study was performed by

analyzing the deformations of the sphere under a uniform

internal pressure for increasingly fine meshes.

The sphere modeled has a radius of 1 meter and a wall

thickness of 5 millimeters. The material modeled was an

aluminum alloy with Young's modulus (E) of 70.OE+3 MPa, and

Poisson's ratio (P) of 0.33.
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The theoretical deformation of an isotropic sphere

under uniform internal pressure can be obtained from

strength of materials arguments as developed in Hearn.

(5:202-203) For a sphere deforming due to internal

pressure, the change in internal volume equals the original

internal volume times the volumetric strain. Assuming that

the change in volume is due primarily to the increase in

radius of the sphere, the final radius is easily found.

Hoop stress for the sphere is simply

aH = pd (3.4)

where p is the internal pressure, d is the diameter of the

sphere, and t is the wall thickness. Volumetric strain

equals the sum of 3 equal mutually perpendicular strains

E: = ( aH - H (3.5)

0 = ( 1 - 0 (3.6)

The change in internal volume is then

A 3pd ) (3.7)

Noting that the final volume is

Vf = Vi + &V (3.8)

Vf = vi [ + 3pd( 1 - 3 (3.9)
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the final radius may be calculated as

r= [ [1 + 1-u) (3.10)

The change in radius Ar is simply rf - ri

Substituting in the appropriate values one finds the

theoretical change in radius is 0.957 E-4 M = .957 mn.

Spherical models were analyzed containing 144, 312,

544, and 840 elements. To simplify evaluation of the

results, care was taken to ensure that nodes rested on each

of the x, y and z axes. The model was restrained by

allowing these nodes to move only along their respective

axes. This restraint method ensured that all motion would be

fully symmetrical.

Figure 10 shows the results of the convergence test as

percent error in displacement magnitude vs latitudinal angle

(measured from the x axis). As can be seen, the model is

converging to the theoretical solution as it is refined.

The 544 element model was chosen for the aeroelastic

analysis.

Missing from Figure 10 are the errors at the poles.

These points proved to be bad points in the model.

Displacements at these points were typically 100 percent

higher than theoretical, and worsened as the model was

refined. The nodes simply had too many elements (ranging

from 8 to 20) attached to be modeled accurately. In
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Figure 10. Error in Displacement Magnitude for Varying Mesh
Density.

addition, the elements were much smaller and had higher

aspect ratios than other elements in the model. This led to

a region of the model which was laterally much less rigid

than other regions of the sphere, resulting in large

deflections.

To estimate the effect of the two bad nodes on the

overall behavior of the sphere, the nodes were forced to

displace the theoretical amount. Figure 11 shows the

results of this test for the 312 element model. It is clear
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Figure 11. Effect of Error at Poles for 312 Element Sphere

that the nodes have a very small effect on the overall

behavior of the model.

The errors experienced at the poles for a uniform

pressure loading will have little effect on the aeroelastic

analysis because they lie on the stagnation points of the

flow. Lateral loads at the points are very small,

minimizing the influence of the nodes on the analysis.
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IV. Discussion and Results

Introduction

In this chapter, the results of the analyses conducted

to test the iterative solution technique are presented and

discussed. Before discussing the results, however, the

performance of the solution technique itself is examined.

Evaluation of the Iterative Technique

Whenever a technique for solving a problem is

developed, there are two evaluations which must be made.

One, obviously, is an evaluation of the quality of the

results provided by the solution. The second, sometimes

overlooked evaluation, is of the solution technique itself.

How a solution behaves can be as important as the results it

gives.

Speed. The time required to generate results is an

important factor when evaluating a means of solving a

problem. Much effort was spent in the development of the

present method to improve performance in this area.

Because MSC/NASTRAN, a comercial software package, is

used for the structural analysis portion of each iteration,

attempts to reduce the overall running time of the method

were limited to changes in the aerodynamic code. Of the

many changes made, the one with the largest impact on
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execution time was the row-echelon reduction of the

constraint equations discussed in Chapter II.

For moderately large models, the time required to

complete an iteration is dominated by the solution of the

matrix equations 2.33 and 2.34. For the 216 element wing

model, the original method of solution resulted in a linear

system of 302 equations which had to be solved each time

step. After row-echelon reduction, this system is reduced

to just 95 equations. Because the time required to solve N

simultaneous equations is proportional to N3 , solution of

the reduced set takes approximately 1/30th the time required

to solve the original set.

Other, less dramatic, improvements in performance were

obtained by modifying several of the key subroutines to make

them more efficient. These modifications resulted in 15 to

35 percent reductions in execution time, depending on the

size of the model and the number of time steps used.

Despite these improvements, the aerodynamic solution is

still very computationally intensive, and requires a very

fast computer to implement realistically. The 216 element

wing required from three to nine hours per iteration (50

time steps) on an ELXSI 6400 supermini computer.

Converaence Rate. Another factor in the time required

to generate results is the rate of convergence. Convergence

rate was found to be dependent on the relative magnitude of

aeroelastic distortion. As the magnitude of the nodal
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displacements increased, so did the number of iterations

required to reach equilibrium. Table III lists the number

of iterations required for the three test models under

varying conditions. The maximum relative displacements are

generated by dividing the maximum nodal displacement by the

radius (sphere) or the semispan (wings).

Table III. Iteration Convergence Rates for Various Models

Model Max Rel. Displacment # Iterations

Sphere 0.0000244 3

Wing AR=l,a=50  0.00011 4

Wing AR=I,a=200  0.00079 5

Wing AR=6,a=50  0.0021 7

Sensitivity to Input. As pointed out in Chapter II and

demonstrated in Chapter III, the aerodynamic solution may

fail for some model geometries. Another, less serious,

problem appears as the nodal positions are perturbed from

iteration to iteration. The problem arises due to a

numerical ambiguity in the subroutine which performs the

row-echelon reduction of the constraint equations.

When the constraint equations for an undeformed model

are reduced, some number of unknowns are determined to be

dependent on the other unknowns, and are eliminated.

Unknowns are eliminated when the corresponding column in the
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coefficient matrix, with the exception of the diagonal

term, are reduced to near zero values. The zero cutoff

constant is specified by the input data. As the body is

deformed, the same dependency relationships should be found,

but small changes in the nodal positions can push values in

the columns which should not be eliminated below the

specified cutoff value. This results in an incorrect

solution based on false dependencies.

This problem appeared with the high aspect ratio wing

and with the sphere model. Both models successfully

completed the first iteration, but failed to give proper

answers on the second iteration. Increasing the magnitude

of the zero cutoff value resolved the problem for both

models.

While this problem is solvable, it is troublesome as it

makes automation of the iterative process uncertain. It is

necessary to check after each of the early iterations to

insure that the proper number of equations is being solved.

One solution would be to append a data card specifying the

number of independent unknowns for the initial iteration to

the restart file. Later iterations could then automatically

modify the zero cutoff value if an error is detected. Using

this technique, it would only be necessary to manually check

the results of the first iteration.

Overall, the qualitative performance of the iterative

technique is satisfactory. Convergence is achieved in a
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small number of iterations, and run times, while not short,

are not unreasonably long. Before declaring the solution

method a success, however, it is necessary to achieve good

results. In the next section, the quantitative performance

of the technique is evaluated.

Evaluation of Numerical Results

The solution technique was tested by analyzing several

model configurations under different conditions. Each

configuration was intended to reveal a different aspect of

the aeroelastic solution and its effects on the model. The

physical properties of the models are described in Chapter

III.

Results for the High Aspect Ratio Flat Plate Wing. The

analysis of the high aspect ratio wing was designed to allow

comparison with one-dimensional aeroelastic theory. Three

runs, at three different velocities, (dynamic pressures)

were performed. Wing orientation was fixed at five degrees

angle of attack. To ensure that steady state conditions

were reached, a minimum of 50 time steps were used in the

aerodynamic analysis.

For the first run, ' corresponds to a low mach number.

The second run corresponds to a mach number of .7, the

maximum allowed in potential flow theory. A third run was

made with the velocity set midway between the first two. An

analysis near the divergence dynamic pressure was not
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possible for this wing, because divergence occurs at

* supersonic velocities. A value of 4.2 is used for CI

(12:77)

Figure 12 is a displacement contour map for the

deformed wing at high mach number. It clearly shows the

characteristic deformation of a wing, with the point of

maximum deflection at the tips of the leading edges.

Figure 13 shows the same wing in a head on view, with

displacements magnified to make them visible.

Tables IV and V compare the calculated angular and

bending displacements at the wing tips with those predicted

by one-dimensional theory for each of the dynamic pressures.

The tables indicate a sizable discrepancy between the

calculated and theoretical values. These discrepancies are

not unexpected.

The one-dimensional equations were developed under the

assumption that the lift distribution along the span is

constant. This assumption would be correct for an infinite

wing, but for a finite wing, tip effects occur. The lift

distribution decreases from a maximum at the root to zero at

the tips. Figure 14 shows the lift distribution for an

elliptical wing. The distribution for a rectangular wing

exhibits similar behavior.

Because the lift on a finite wing falls off as the tips

are approached, the magnitude of the forces, and thus the
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Table IV. Angular Displacement at the Wing Tips with

Changes In Dynamic Pressure (AR=6)

Rotations (rad) Percent

Theory Calc. Difference

0.1776 0.0007679 0.0003595 -53

1.8 0.008362 0.003843 -54

5.1 0.02796 0.01164 -58

Table V. Bending Displacement at the Wing Tips with Changes
In Dynamic Pressure (AR=6)

Displacements (in) Percent
Theory Calc Difference

0.1776 -0.2786 -0.1834 -34

1.8 -0.3052 -0.1974 -35
0

5.1 -1.03 -0.606 -41

moments, acting farthest from the wing root are reduced. The

result is smaller angular and bending displacements than

would be produced by a constant lift distribution. Also,

because there is less twist at the wing tips, the lift near

the tips is reduced, which further reduces the actual

bending displacement.

The finite wing lift distribution is independent of

velocity, so one would expect the discrepancies between

one-dimensional aeroelastic theory and the calculated
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results to be independent of velocity. Tables IV and V

support this.

Taking the above considerations into account,the

results obtained for the high aspect ratio wing are

reasonable. Further validation of the numerical results

requires comparison with a more sophisticated aeroelastic

theory and is beyond the scope of this work.

Results for the Unit Aspect Ratio Flat Plate Wing. The

aerodynamic code used in the iterative solution was

originally written for use in an aerodynamic-dynamic

simulation of a wing at high angles of attack. (Reference 8)

The force and moment coefficients acting on the wing play an

important part in such an analysis. To determine,

qualitatively, the effect of aeroelasticity on the force and
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moment coefficients, a unit aspect ratio wing is analyzed

for varying angles of attack. A case with sideslip is also

investigated.

Figure 15 shows the deformed wing for a0= 20.

Displacements have been magnified to make them easily

visible. Figure 16 is a displacement contour plot of the

same wing. These figures illustrate the aeroelastic

deformations that affect the wing stability derivatives.

The increased angle of attack at the wing tips will

increase both the normal force coefficient and the moment

coefficient about the y axis. The change in angle of attack

at the wing tip increases with increased initial angle of

attack. One therefore expects aeroelastic effects to be

more prominent at higher angles of attack. Tables VI and

VII illustrate this relationship.

Table VI. Change in the Normal Force Coefficient due to
Aeroelastic Effects at Various Angles of Attack

Cf %Cag(degrees) (undef) z (def) % Change

2 -0.045286 -0.045293 0.015

5 -0.13917 -0.13920 0.022

10 -0.33774 -0.33784 0.029

15 -0.57970 -0.57994 0.041

20 -0.86025 -0.86070 0.052
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Table VII. Change in the Y Moment Coefficient due to
Aeroelastic Effects at Various Angles of Attack

(degees) (undef) Cmy (def) % Change

2 -0.0081723 -0.0081732 0.011

5 -0.032131 -0.032139 0.025

10 -0.087028 -0.087056 0.032

15 -0.15431 -0.15437 0.039

20 -0.23004 -0.23015 0.048

It is clear from these results that the current method

is capable of estimating the effects of aeroelasticity on

the factors affecting aircraft stability and control. In

its current state, the iterative technique could be used to

perform a quasi-static (no inertia effects) analysis of a

structure in various flight conditions. Indicated

corrections could then be applied to the rigid body

stability and control derivatives.

Results for a Sphere. To test the iterative technique

on a non-lifting, closed shell structure, a sphere was

modeled and analyzed. Figure 17 shows the model before and

after deformation.

The pressure distribution over a sphere in potential

flow is given by 1 - 9/4sin 2 (9) (6:349), where 0 is

the angle from a point on the sphere to the stagnation

point. The air inside the sphere is stationary, and thus is
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assumed to have the same pressure as the stagnation points.

The difference between the internal and external pressures

at all other points (net outward) is the source of the loads

which deform the sphere.

The load distribution is proportional to sin 2 (e), and

thus goes from zero at the stagnation points to a maximum 90

degrees from the stagnation point. This load distribution

causes the sphere to flatten out as shown in Figure 17. As

the sphere flattens the pressure near the stagnation points

increases, and the pressure near the 90 degree mark

decreases. These changes were calculated and are presented

in Table VIII and plotted in Figure 18.

Quantitative evaluation of the results for the analysis

of the sphere is difficult. For a general shell structure

it may be impossible. Because of the nature if the

iterative solution, however, the results of such an analysis

should be capable of achieving a high degree of accuracy.

The limiting factor will be the structural model itself.

Conclusions

The analyses discussed above were not intended to be

studies in and of themselves, but were intended to test

iterative solution technique and explore its capabilities.

The results indicate that the technique is capable of

solving a wide range of problems in several disciplines,

including structural design and stability and control.

Further study is necessary to fully establish the
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Table VIII. Changes in C on a Sphere due to Aeroelastic
* Deformation P

Position Cp Cp
(degrees) (undeformed) (deformed) v Cp

0 1.000000 1.000000 0.000000

10 0.928974 0.928982 0.000008

20 0.728588 0.728613 0.000025

30 0.421849 0.421890 0.000041

40 0.005132 0.005136 0.000040

50 -0.334272 -0.334250 0.000022

60 -0.686415 -0.686425 -0.000010

70 -0.965099 -0.965143 -0.000044

80 -1.142572 -1.142640 -0.000068

90 -1.203352 -1.203429 -0.000077

capabilities and limits of the method. The next chapter

provides suggestions for future study and development of the

technique.
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V. Recommendations

Much of this investigation was performed with the

intent that this work would serve as the foundation upon

which future studies would be built. Many areas exist which

would benefit from further study. A few of these are

discussed below.

This investigation is limited to static aeroelasticity.

The extension of this work to unsteady phenomena would

greatly enhance its utility in the field of aircraft

stability and control. One possible application is the

incorporation of unsteady aeroelastic effects in an

aerodynamic-dynamic simulation.

Structural modeling in the current method is limited to

a single, relatively primitive finite element. The

incorporation of higher degree of freedom elements is

necessary before the technique can be used for serious

structural analysis. This extension would involve the

development of a means of selectively breaking those

elements down into the basic triangle required by the

aerodynamic code, or in the case of internal elements,

hiding them from the aerodynamic solution. The

incorporation of non-linear elements would further enhance

the method.
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Appendix A: Interface Between MSC/NASTRAN and the

Potential Flow Code

This appendix describes the development and use of the

interface between MSC/NASTRAN and the aerodynamic code.

Due to the iterative nature of the aeroelastic

solution, it is desirable to have a single model for both

the aerodynamic and the finite element analysis. Because

the two programs share many data requirements, this is

fairly easy to implement.

Common between the two programs is the content of

geometric data. Both programs use a three noded triangular

0 element which requires nodal positions (x,y,z coordinates)

and element connectivity information. The data input

routines for the aerodynamic code were rewritten to accept

this information in the form of MSC/NASTRAN GRID and CTRIA3

cards. In addition to the obvious advantage of having a

single data format, this change is useful in other ways.

There exist many preprocessors which can produce Nastran

data files. These programs may now be used to generate

model geometry, whether or not an elastic analysis is being

done. Post processing for this thesis was performed using

SDRC-IDEAS by the Structural Dynamics Research Coproration,

Milford OH.
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Both MSC/NASTRAN and the aerodynamic code require

information not used by both programs. To allow a single

input data file for both programs, the MSC/NASTRAN comment

card is utilized. All information required by the

aerodynamic code, other than nodal and element information,

is input on MSC/NASTRAN style cards, with the name of the

card beginning with a dollar sign. This format forces

MSC/NASTRAN to read all aerodynamic specific data as comment

cards. In like manner, the aerodynamic input routines

ignore MSC/NASTRAN specific data. Thus the goal of a single

data file for both programs is achieved.

Load information is calculated by the aerodynamic code,

and therefore cannot be included in the initial data file. A

routine was written and included in the aerodynamic solution

which outputs nodal pressures in the form of MSC/NASTRAN

PLOAD4 cards. See Reference (10:2.4-325) for more

information on this card.

During the iteration process, the interface between

MSC/NASTRAN and the aerodynamic codes works as follows:

1. A single file containing all data necessary for

both programs is created.

2. The input file is read into the aerodynamic code.

Two copies of the input file are created as it is read. The

first is a restart file that will be used to start the next

iteration. The default name of this file is
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<filename>.r##, where <filename> is the root name of the

input data file, and ## indicates the iteration number. The

second file created is the MSC/NASTRAN data file which

includes the generated PLOAD cards. The default name for

this file is <filename>.n##.

3. MSC/NASTRAN is used to generate a nodal

displacement file using the previously generated .n## file.

The original data file should have the statement

DISPLACEMENT(PUNCH)=ALL

in the MSC/NASTRAN case control deck.( 10:2.3-20 ). Nodal

displacements are written to a file named <filename>.PCH,

which should be renamed to have a .d## extension.

4. The aerodynamic code is run using the .r## file

generated in the previous iteration. The .d## file is

automatically read and nodal positions adjusted.

5. Steps 3 and 4 are repeated until no change occurs

in the .d## and .n## files from one iteration to the next.

Figure 19 contains a flow chart of this process.

Appendix B describes each of the aerodynamic specific

data cards, as well as those MSC/NASTRAN Cards required for

an aerodynamic only analysis. Appendix C consists of the

input data file for a 64 element, unit aspect ratio, flat

plate wing. For more information on MSC/NASTRAN Specific

input data, see Reference (14) or the MSC/NASTRAN Users

Guide (Reference 10).

A-3



input (.dat)
file

0I

04

M0/ata

Figure~~dsp 19(lo .hatofte#trtiePrcs

A-le



APPENDIX B: Input Data Card Formats

This appendix lists the format for data cards in the

model input file. All cards with the exception of GRID,

CTRIA3, and ENDDATA are not part of MSC/Nastran and are

prefaced with a "$" (dollar sign). Thus they are treated as

comments by MSC/NASTRAN. The cards are described in the

following format.

CARD NAME: The name of the card.

PURPOSE: A brief description of the purpose of the

card.

DESCRIPTION: A field by field description of the card. All

descriptions begin with field 2. Field 1, the

first 8 characters of the card, always

contains the name of the card in capital

letters, left justified. Fields may be either

long (16 characters) or short (8 characters)

and floating point or integer. Type is

indicated by the codes f or i. One other

field type, file, is found on some cards.

Along with the type, the starting and ending

columns of each card are given.
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REMARKS: Information concerning multiple entries, default

values, etc. is listed.

It should be noted that unless otherwise stated, cards

may appear in the model file in any order. Cards with

multiple entry capability need not have multiple entries.

When a default value is indicated for any field, that field

may be left blank.
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CARD NAME: $AIRPROP

PURPOSE: Input flow constants.

AIRP 2 1 3 1 4 1 5 1

DESCRIPITON:

field 2:f(9-24) reference pressure (absolute).

field 3:f(25-40) free stream velocity.

field 4:f(41-56) free stream pressure (absolute).

field 5:f(57-72) density of fluid.

REMARKS: A value of -2.0 for the reference pressure

indicates that a thin lifting surface is being

analyzed. For values greater than -2.0 the

pressure is used as the interior pressure for a

closed body. The default reference pressure is

-1.0, which is a special value indicating that

the flow stagnation pressure should be used.

The default value for the free stream velocity is 100 M0s

The default value for the free stream pressure is 101330 MPa

The default value for the fluid density is 1.225 Kg/M^3
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CARD NAME: $CONVEDG
0

PURPOSE: Specify the convecting edge elements.

CM EDO 2 1 3 1 4 1 .. IIIII

DESCRIPTION:

field 2:i(9-16) node 1 of convecting edge 1 on card.

field 3:i(17-24) node 2 of convecting edge 1 on card.

field 4:i(25-32) edge circuit identifier.

REMARKS: Up to 3 convecting edges may be entered on each

card. Node numbers must correspond to nodes

defined using GRID cards. The edge circuit

identifier refers to a convecting body.

(if only one body, then must be 1)
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CARD NAME: $CORNER

PURPOSE: Identify the corners on the body.

lER 2__

DESCRIPITON:

* field 2:i(9-16) corner node.

REMARKS: Up to 8 corner nodes may be defined on each card.

* Node numbers must correspond to nodes defined

using GRID cards.

B-5

S



CARD NAME: CTRIA3

PURPOSE: Define an element (triangle).

TRIA3 12 - 4 5 _6

DESCRIPITON:

field 2:i(9-16) element (triangle) number.

field 3:i(17-24) (MSC/NASTRAN specific)

field 4:i(25-32) node number of first vertex

field 5:i(33-40) node number of second vertex

field 6:i(41-48) node number of third vertex

REMARKS: This card is an MSC/NASTRAN bulk data card. The

element number is a unique number between 1 and

the total number of elements. Elements may be

entered in any order, but no number should be

skipped. Node numbers must be valid nodes entered

with a GRID card. The long form (16 character

fields) of this card is supported (see the GRID

card). For more information, see the MSC/NASTRAN

users manual (10:2.4-118).
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CARD NAME: $CUTOFF

PURPOSE: Define values to be considered zero

TOFF 1 2 1 3 1 4 1

DESCRIPITON:

field 2:f(9-16) effective zero for triangles

field 3:f(17-24) effective zero for wake

field 4:f(25-32) effective zero for row echelon

calculations

REMARKS: Effective zero values for triangles and the wake

are used to determine proximity to singular values

during internal calculations. Default for each is

1.0 x 10-6. The effective zero for row-echelon

calculations is used when determining redundant

equations. Default is 1.0x10-5. IMPORTANT: If

an analysis results in loss of symmetry and poorly

satisfied no penetration conditions, it is likely

that this value is too high or too low. The

reduced number of equations is printed in the .log

file, and should remain constant from one

iteration to the next.
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CARD NAME: $EDGECOR

PURPOSE: Input the starting and ending nodes for the edge

vortex cores.

EE 2 3

DESCRIPTION:

field 2:i(9-16) node 1 of core 1 on card.

field 3:i(17-24) node 2 of core 1 on card.

REMARKS: Up to 4 cores may be entered on each card. Node

numbers must correspond to nodes defined using

GRID cards.
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CARD NAME: SELASTIC

PURPOSE: Identify the run as an aeroelastic iteration.

6-sr 2 3 4

DESCRIPITON:

0 field 2:file(9-24) name of MSC/NASTRAN data file to be

written.

field 3:file(25-40) name of displacement file to be

read.

field 4:i(41-48) iteration number.

REMARKS: If a filename is supplied for field 2 (3), that

file will be created (read). If left blank, the

root name of the input data file will be used with

the file extension ".n#" or (".d#") where # refers

to the iteration number. Field 4 should be blank

in the initial data file. It is automatically

incremented in the restart file for each

iteration.
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CARD NAME: $ERRCHK

PURPOSE: Turn on printing of the no penetration error.

DESCRIPITON:

No additional fields

REMARKS: This card is included to aid in evaluating a new

model. If the card is included in the input data

file, a file named "noPen.err" will be created.

This file has the format

"Element: # Error: #.,"

with one line for each element. The error is

calculated by subtracting the calculated

velocities normal to the element surface from the

actual (inertial) velocity normal to the surface.
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CARD NAME: GRID

PURPOSE: Define a node.

rid 2 1- T4 5 6

SID* 2 4 5

DESCRIPITON:

field 2:i(9-16) node number.

field 3:i(17-24) (MSC/NASTRAN specific)

field 4:f(25-32) x position of node

field 5:f(33-40) y position of node

field 6:f(41-48) z position of node

REMARKS: This card is an MSC/NASTRAN bulk data card. The

node number is a unique number between 1 and the

total number of nodes. Nodes may be entered in

any order, but no number should be skipped. The

long form (16 character fields with a continuation

line) of this card is supported. It is used by

appending an asterisk (*) to the name GRID.

Fields 2 through 5 are on the first line. Field 6

is on a continuation line. A continuation line is

indicated by an asterisk in column 1 of field 1.

For more information, see the MSC/NASTRAN users

manual (10:2.4-224).
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CARD NAME: $ITERATE

PURPOSE: Flag the body as non planar.

ITERATEJ 2 1 1 1

DESCRIPITON:

field 2:(si) maximum number of iterations.

REMARKS: For models that are non planar or will be

deformed, the potential flow solution requires

internal iteration. Field 2 contains the maximum

number of iterations which may be attempted. The

default value is 10.
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CARD NAME: $KUTTA

PURPOSE: Identify the nodes where the Kutta condition is to

be imposed.

TTA 12 3

DESCRIPITON:

field 2:i(9-16) node.

field 3:f(17-32) Kutta equation weighting factor.

REMARKS: Up to three nodes may be specified on each card.

The weighting factor determines the degree to

which the Kutta conditions are favored over the

no-penetration conditions. A value of 50.0 is

typical.
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CARD NAME: $ORIENTA

PURPOSE: Input the starting orientation of the body.

WIENT 2 13 4

DESCRIPITON:

field 2:f(9-16) starting roll angle in degrees

field 3:f(17-24) starting pitch angle

filed 4:f(25-32) starting yaw angle

REMARKS: Default value for each is 0.0 degrees. Card may

be omitted if there is no initial angular

displacement.
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CARD NAME: $POTPATH

PURPOSE: Identify the paths for calculating the potential.

TPR1 2 13 4

DESCRIPITON:

field 2:i(9-16) node 1

field 3:i(17-24) node 2

field 4:i(25:32) element used to calculate the potential.

REMARKS: Up to 3 paths may be entered on each card. For a

non-convecting body, this card may be omitted.
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CARD NAME: SPOTSTRT

PURPOSE: Identify starting nodes for the potential paths.

TSTRTJ 2 1 .. II

DESCRIPITON:

* field 2:i(9-16) potential starting node.

REMARKS: Up to 8 starting nodes may be defined on each

• card. Node numbers must correspond to nodes

defined using GRID cards. For a non-convecting

body, this card may be omitted.

0
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CARD NAME: $TIME

PURPOSE: Input time parameters for the run.

TIME 12 13 40

DESCRIPITON:

field 2:i(9-16) number of time steps to run

field 3:i(17-24) number of wake steps to keep

field 4 f(25-40) magnitude of time step

REMARKS: Defaults are 1 time step, I wake step, time step

1.0. For a non-convecting body, this card may be

omitted.
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CARD NAME: $WAKSTRT

PURPOSE: Input the starting nodes for the convecting wake.

"STRTJ 2 1 .. I

DESCRIPTION:

field 2:(si) wake starting node.

REMARKS: Up to 8 starting nodes may be defined on each

card. Node numbers must correspond to nodes

defined using GRID cards. Wake starting positions

are taken to be the node positions as defined by

the grid cards.
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CARD NAME: SWING

PURPOSE: Input the wing constants.

WING 1 2 3 4

DESCRIPITON:

field 2:f(9-24) wing chord

field 3:f(25-40) wing span

field 4:f(41-56) mean aerodynamic chord

REMARKS: For a closed body, this card may be omitted.

Default values are all 1.0.
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C. Sample Input Data File

The following input data file defines a flat plate unit

aspect ratio wing, four inches square. Flight velocity is

set to 1760 inches per second. The angle of attack is 10

degrees. The analysis will run for 60 time steps, keeping

20 wake rows. A Nastran input file with the defualt

filename will be produced.
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$ This a 64 elemat wing vith unit aspect ratio.
$

$ Establish wing and run properties.
$

$lING 4.0 4.0 4.0
STINK 60 20 1.0
$0RIEDTA 0.0 10.0 0.0
MiRPROP -2.0 1760.0 1.145B-7
$
$ Define the edge cores.
$

$EDGEICO 1 2 2 3 3 4 4 5
SRDGRM0R 5 14 1 10 14 23 10 19
$RDGIMOB 23 32 19 28 32 41 28 37
SIRDGCR 37 38 38 39 39 40 40 41
$

$ Define the convecting edges. (wake shedding edges)
$

$CONVZDG 5 14 1 1 10 1
$CONVEDG 14 23 1 10 19 1
$CONVKDG 23 32 1 19 28 1
$CONVEDG 32 41 1 28 37 1
$CONVIDG 37 38 1 38 39 1
$CONVYDG 39 40 1 40 41 1
$
$ Identify the nodes for rake starting positions.

$VAKSTRT 1 5 10 14 19 23 28
$VAKSTR? 32 37 38 39 40 41
$

$ Identify the nodes where the Kutta condition is enforced.
$
SKUTTA 37 50.00000 38 50.00000
SKrtTA 39 50. 00000 40 50. 00000

SKUTTA 41 50.00000
$

$ Identify the corners of the ving.
$

SCORNER 1 5 37 41
$

$ Identify the starting point and paths for the potential.
$

SPOTS"RT 3
$POPATI 3 2 5 3 4 9
*POTPATH 4 5 13 2 1 1
SPOTPATH 1 6 1 2 7 5
$POTPATH 3 8 9 4 9 13
SPOTPATH 1 10 4 2 11 2
SPOTPATH 3 12 6 4 13 10
1POTPATH 5 14 14 10 15 17
SPOTPATH 11 16 21 12 17 25
SPOPATH 13 18 29 10 19 20
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$POTPATH 11 20 18 12 21 22
SPOYPATH 13 22 26 14 23 30
$POTPATN 19 24 33 20 25 37
$POTPATH 21 26 41 22 27 45
$POTPAi 19 28 36 20 29 34
$POTPATH 21 30 38 22 31 42
$POTPATN 23 32 46 28 33 49
$POTPATHi 29 34 53 30 35 57
SPOPATH 31 36 61 28 37 52
SPOTPITH 29 38 50 30 39 54
$POTPATN 31 40 58 32 41 62
$

$ Turn on internal iteration and produce a nastran data deck
$ vith default name.

$
$I TERATR
SRLASTIC
$
$ Nastran executive control deck
S

ASSIGN OUTPUT2=ving64.op2,STATUS=NEV,UNIT=12
TIME 10
DIAG 64
SOL 101 $STATIC ANALYSIS
COMPILE SUPER3, SOUIN=MSCSOU
CEND

$

TITLE = 64 elemnt unit aspect ratio wing
DISPLACEMENT(punch) ALL
OLOAD = ALL

SPC= 1
LOAD=I
SUBCASE 1
$

BEGIN BULK
CTRIA3 1 1 1 2 6
CTRIA3 2 1 2 11 6
CTRIA3 3 1 11 10 6
CTRIA3 4 1 10 1 6
CTR1I3 5 1 2 3 ?
CTRIA3 6 1 3 12 7
CTRIA3 7 1 12 11 7
CTRIA3 8 1 11 2 7
CTRIA3 9 1 3 4 8
CTRIA3 10 1 4 13 8
CTRIA3 11 1 13 12 8
CTRIA3 12 1 12 3 8
CTRIA3 13 1 4 5 9
CTRIA3 14 1 5 14 9
CTRIA.3 15 1 14 13 9
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CTIA3 16 1 13 4 9
CTRIA3 17 1 10 11 15
CTRIA3 18 1 11 20 15
CIRIA3 19 1 20 19 15
CTIA3 20 1 19 10 15
CTRIA3 21 1 11 12 16
CTRIA3 22 1 12 21 16
CTRIA3 23 1 21 20 16
CTRIA3 1 20 11 16
CTRI3 25 1 12 13 17
CTRIA3 26 1 13 22 17
CTRIA3 27 1 22 21 17
CTRIA3 28 1 21 12 17
CTIA3 29 1 13 14 18
CTRIA3 30 1 14 23 18
CTRIA3 31 1 23 22 18
CTRIA3 32 1 22 13 18
CRIA3 33 1 19 20 24
CTRIA3 34 1 20 29 24
CTRIA3 35 1 29 28 24
CTRIA3 36 1 28 19 24
CTRIA3 37 1 20 21 25
CTRIA3 38 1 21 30 25
CTRIA3 39 1 30 29 25
CTRIA3 40 1 29 20 25
CTRIA3 41 1 21 22 26
CTRIA3 42 1 22 32 26
CTRIA3 43 1 31 30 26
CTRIA3 44 1 30 21 26
CTRIk3 45 1 22 23 27
CTRIA3 46 1 23 32 27
CTRIA3 47 1 32 31 27
CTRIA3 48 1 31 22 27
CTRIA3 49 1 28 29 33
CTRIA3 50 1 29 38 33
CTlIA3 51 1 38 37 33
CTRIA3 52 1 37 28 33
CTRIA3 53 1 29 30 34
CTRIA3 54 1 30 39 34
CTRIA3 55 1 39 38 34
CTRIA3 56 1 38 29 34
CTRIA3 57 1 30 31 35
CRIA3 58 1 31 40 35
CTRI 59 1 40 39 35
CTRIA 60 1 39 30 35
CTRIA3 61 1 31 32 36
CRIA3 62 1 32 41 36
CRIA3 63 1 41 40 36
CTRIA 64 1 40 31 36
$
GRID 1 0 0.0 -2.0 0.0
GRID 2 0 0.0 -1.0 0.0
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GRID 3 0 0.0 0.0 0.0
GRID 4 0 0.0 1.0 0.0
GRID 5 0 0.0 2.0 0.0
GRID 6 0 -0.5 -1.5 0.0
GRID 7 0 -0.5 -0.5 0.0
GRID 7 0 -0.5 0.5 0.0
GRID 9 0 -0.5 1.5 0.0
GRID 10 0 -1.0 -2.0 0.0
GRID 11 0 -1.0 -1.0 0.0
GRID 12 0 -1.0 0.0 0.0
GRID 13 0 -1.0 1.0 0.0
GRID 14 0 -1.0 2.0 0.0
GRID 15 0 -1.5 -2.5 0.0
GRID 16 0 -1.5 -0.5 0.0
GRID 17 0 -1.5 0.5 0.0
GRID 17 0 -1.5 1.5 0.0
GRID 19 0 -2.0 -20 0.0
GRID 20 0 -2.0 -1.0 0.0
GRID 21 0 -2.0 0.0 0.0
GRID 22 0 -2.0 1.0 0.0
GRID 23 0 -2.0 2.0 0.0
GRID 24 0 -2.5 -1.5 0.0
GRID 25 0 -2.5 -0.5 0.0
GRID 26 0 -2.5 0.5 0.0
GRID 27 0 -2.5 1.5 0.0
GRID 28 0 -3.0 -2.0 0.0
GRID 29 0 -3.0 -1.0 0.0
GRID 30 0 -3.0 0.0 0.0
GRID 31 0 -3.0 1.0 0.0
GRID 32 0 -3.0 2.0 0.0
GRID 33 0 -3.5 -1.5 0.0
GRID 34 0 -3.5 -0.5 0.0
GRID 35 0 -3.5 0.5 0.0
GRID 36 0 -3.5 1.5 0.0
GRID 36 0 -4.0 -20 0.0
GRID 38 0 -4.0 -2.0 0.0
GRID 39 0 -4.0 0.0 0.0
GRID 40 0 -4.0 1.0 0.0
GRID 41 0 -4.0 2.0 0.0

*PC 1 3 123456 0.0
SPC 1 12 123456 0.0
SPC 1 21 123456 0.0
SPC 1 30 123456 0.0
SPC 1 39 123456 0.0

Ailt  1 10.616 .33tMA
tA 1 0. +4B 1
PSHRLLt  1 1 .0625 1PA
'PA 1 1. 1 .8333333 0.
PARAN AUTOSPC Y8S
PARAN POST -2
NDDATA
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